This blog aims to serve as a main hub to discuss and showcase the finer points when it comes to the legal and ethical ‘gray space’ of data science, so to speak. Much of the content here comes from students enrolled in UC Berkeley’s School of Information, in the Data Science master’s program.

The Course

Much of the content and key issues discussed in this blog arise from course “Behind the Data: Humans and Values” (formerly titled “Legal, Policy, and Ethical Considerations for Data Scientists”) aims to explore this area in detail, from all different perspectives. This course provides an introduction to the legal, policy, and ethical implications of data. The course will examine legal, policy, and ethical issues that arise throughout the full life cycle of data science from collection, to storage, processing, analysis and use including, privacy, surveillance, security, classification, discrimination, decisional-autonomy, and duties to warn or act. Case studies will be used to explore these issues across various domains such as criminal justice, national security, health, marketing, politics, education, automotive, employment, athletics, and development. Attention will be paid to legal and policy constraints and considerations that attach to specific domains as well as particular data-types, collection methods, and institutions. Technical, legal, and market approaches to mitigating and managing discrete and compound sets of concerns will be introduced, and the strengths and benefits of competing and complementary approaches will be explored.

Much of the content on this blog showcases the thoughts and work of past and present students who have taken this course; their projects delve into this new and encourage thought and discussion, especially as big data continues to grow and technology continues to integrate itself into our daily lives.

The People


PhD, Information Management and Systems; UC Berkeley; 2002 – 2008

Master’s degree in Computer Science; UC Berkeley; 2002 – 2008

Bachelor of Science in Computer Science; University of Minnesota-Twin Cities; 1997 – 2000


Nathan Good is the current Principal at Good Research, LLC. As a grad student, Nathan interned at PARC, Yahoo! and aHP Labs in Bernardo Huberman’s  Information Dynamics Lab.  Before that he was at PARC (formely Xerox PARC) in Marc Steffik’s Human Document Interaction Group. Nathan also worked with Joe Konstan and John Riedl in the Grouplens group at the University of Minnesota



Bachelor’s, English and cinema and media culture, University of Minnesota, 2005

M.L.I.S., University of Wisconsin-Milwaukee

Ph.D., information studies, University of Wisconsin-Milwaukee


I am a trans woman and scholar working at the intersections of information, technology, culture, and ethics. My research considers the ways in which the design and use of information technology can promote or hinder the pursuit of social justice. In particular, I am interested in how the standards and categories imposed on the world by informational and technological systems can discriminate by supporting the development of self-respect for some and hindering its development for others. In addition, I employ discourse analysis to explore the values and biases that underwrite understandings of technology, privacy, and ethics as promoted by various stakeholders.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s